The Special Function {C_{n}^{(\lambda)}\left(x\right)}

rendering

1. Differential Equation[-]

The function {C_{n}^{(\lambda)}\left(x\right)} satisfies the differential equation with initial values y \left( 0 \right) =\frac{{2}^{n}\sqrt {\pi }\,\Gamma \left( \lambda+1/2\,n \right) }{\Gamma \left( \lambda \right) \,\Gamma \left( n+1 \right) \,\Gamma \left( 1/2-1/2\,n \right) } and y' \left( 0 \right) =-\frac{{2}^{n+1}\sqrt {\pi }\,\Gamma \left( \lambda+1/2\,n+1/2 \right) }{\Gamma \left( n+1 \right) \,\Gamma \left( \lambda \right) \,\Gamma \left( -1/2\,n \right) }.
All formulas on this page are valid under the condition that 2\,\lambda+2\,n and \lambda-1/2 are not integers (special values for parameters can be entered at the bottom).

2. Derivative in Terms of Lower-Order Derivatives[+]

3. Expansion at 0[+]

4. Local Expansions at Singularities and at Infinity[-]

The differential equation above has 2 non-zero finite singular pointsA complex numberĀ z_0 is a singular point (or singularity of a linear ordinary differential equation with polynomial coefficients, if the leading coefficient of the equation vanishes atĀ z_0..

4.1. Expansion at -1[+]

4.2. Expansion at 1[+]

4.3. Expansion at \infty [+]

5. Hypergeometric Representation[+]

6. Chebyshev Expansion over [-1,1][+]

7. Parameters[-]

The Gegenbauer ultraspherical function {C_{n}^{(\lambda)}\left(x\right)} depends on the parameters n and \lambda. The boxes below can be used to rename or instantiate these parameters.
p1 =  p2 =